PII: S0040-4039(96)01298-1 ## Lewis Acid-catalyzed Coupling Reactions of Allylsilanes with Tris(phenylchalcogeno)methane. Synthesis of Homoallylchalcogenoacetals. ## Claudio C. Silveira, Gustavo L. Fiorin, Antonio L. Braga Depto. de Química - Universidade Federal de Santa Maria, 97119.900, Santa Maria, RS, Brasil Abstract: Reaction of allylsilanes with tris(phenylseleno)methane or tris(phenylthio)methane in the presence of a Lewis acid furnishes the corresponding homoallylchalcogenoacetals in moderate to good yields. Copyright © 1996 Elsevier Science Ltd There has been considerable interest in the development of new synthetic methods employing onganoselenium intermediates.¹ In this way, phenylseleno stabilized carbocations have been applied to the regiospecific formation of new carbon-carbon bonds, by reactions with silyl enol ethers, ^{2,3} alkenes, ^{4,5} arenes⁶ and allylsilanes.^{3,4,6b,7,8} Previous reports using allylsilanes described their reaction with selenoacetals, ⁷ O/Seheteroacetals ⁸ and α-sulphonyl selenides ⁴ mediated by a Lewis acid, furnishing homoallyl selenides. ^{7,8} As a part of our interest on chalcogeno stabilized carbocations we studied the reaction of tris(phenylseleno)methane 1 and tris(phenylthio)methane 2 with allylsilanes 3a-f. These reactions furnished the homoallylseleno 4a-e and the homoallylthioacetals 5a-f with yields indicated in Table 1 (Schemes 1 and 2). $$(C_{6}H_{5}Se)_{3}CH + SiMe_{3} \xrightarrow{CH_{2}Cl_{2}, SnCl_{4}} \underbrace{SeC_{6}H_{5}}_{-78^{0}C, 1h} \underbrace{SeC_{6}H_{5}}_{SeC_{6}H_{5}}$$ $$(C_{6}H_{5}S)_{3}CH + SiMe_{3} \xrightarrow{CH_{2}Cl_{2}/CH_{3}NO_{2}}_{ZnBr_{2}, r.t.} \underbrace{SC_{6}H_{5}}_{SC_{6}H_{5}}$$ ## Scheme 1 Treatment of allyl trimethylsilane 3a (2.5 mol eq.) with 1 and SnCl₄ in CH₂Cl₂ at -78°C, results in formation of homoallyl phenylselenoacetal 4a in 72%, and reaction of 3a with 2 in a mixture of CH₂Cl₂/CH₃NO₂ and ZnBr₂ at room temperature afforded the adduct 5a in 55% yield after column chromatography purification (entry 1, Table 1). Reactions of 3b-f with 1 or 2 gave similar results with yields ranging from 58 to 83% or 35 to 73%, respectively (columns 5 and 8, entries 2-5, Table 1). All reactions of allylsilanes and 1 were observed to be completed in one hour or less, while the phenylthio derivative 2 reacts slower (4.5h to 24h) than the corresponding phenylseleno derivative 1 as indicated in Table 1. In all cases studied on the reaction of allylsilanes with 1, SnCl₄ was the most effective catalyst and CH₂Cl₂ was used as solvent. On the other hand, for the sulfur 2 analogue ZnBr₂ was the best catalyst and the use of nitromethane as a co-solvent was more effective. In the case of reaction with the 2-(methyltrimethylsilyl)heptene **3b** (Table 1, entry 2; Scheme 2), the homoallyl selenoacetal **4b** obtained was easily identified by the ¹H NMR spectrum, in which a triplet at 4.54 ppm (J 7.4 Hz, selenoacetal 1H) and a doublet at 2.67 ppm (J 7.4 Hz, allylic 2H) are seen. In this reaction, a new compound was also formed and identified as the isomer **6** by a doublet at 4.47 ppm (J 5.7 Hz, selenoacetal H) and a broad singlet at 1.72 ppm of the allylic methyl group. A variable ratio on the formation of **4b** and **6** was observed, ranging from 2:1 to 5:1 depending on the reaction conditions. The same type of products were observed in the reaction of **3b** with sulfur derivative **2.** However, in this case isomerization occurs to a lower extent (10% of 7 was formed as determined by GC/MS analysis). In all other cases studied, no such isomerization was observed. $$SiMe_{3} \xrightarrow{(C_{6}H_{5}Y)_{3}CH} \xrightarrow{YC_{6}H_{5}} + \xrightarrow{SC_{6}H_{5}} \xrightarrow{SC_{$$ Scheme 2 Along with homoallylselenoacetals, small amounts of the corresponding allylmonoselenides were formed, which were easily separated by column chromatography. The formation of these compounds occurs probably by reaction of the allylsilane with a phenylselanyl species formed in the reaction media. This is in accordance with previous⁹ reports that allylsilanes react with C₆H₅SeCl (AlCl₃ or ZnBr₂) to give allylselenides. In reactions of 3a-f with 2 the formation of allylsulfides was not observed. In all examples under our reaction conditions any further reaction of the homoallyl selenoacetals formed with another equivalent of allylsilane present in the reaction media was not observed. This reaction could produce the bis(homoallyl)selenide in aggreement with results recently described by Hermans and Hevesi⁷ on the reaction of selenoacetals with allylsilanes. Reaction of allylsilanes 3e and 3f (a 1:1 mixture of isomers) with 1 gave only the product 4e derived from the reaction of allylsilane 3f (entry 5, Table 1), that seems to be more reactive than 3e. Reaction of the same mixture with 2 results in formation of the isomeric homoallylphenylthioacetals 5e and 5f in a ratio of 1:4 (scheme 2, Table 1). | Entry | Allylsilane | Product* | t | Yield | Product*,c | t | Yield ^{c,f} | |-------|--|-----------------|-----|-----------------------------------|--------------------------|-----|----------------------| | | | | (h) | (%) | | (h) | (%) | | 1 | SiMe ₃ | SePh
4a SePh | 1 | 72 ^b | SPh
5a SPh | 24 | 55 | | 2 | SiMe ₃ | SePh
SePh | 1 | 58 ^b (73) ^c | SPh SPh | 4.5 | 73 ^d | | 3 | SiMe ₃ | PhSe SePh | 1 | 65 ^b (75) ^c | PhS SPh | 20 | 59 | | 4 | SiMe ₃ | SePh
4d SePh | 1 | 81 ^b (83) ^c | SPh
5d SPh | 7 | 65 | | 5° | 3e SiMe ₃ SiMe ₃ SiMe ₃ | SePh
4e SePh | 1 | 54 ^b (69) ^c | SPh
SPh
SPh
SPh | 24 | 35 | Table 1. Homoallylchalcogenoacetals obtained. a) All products were fully characterized by ¹ H NMR, ¹³C NMR, IR, GC/MS and gave correct elemental analysis. ^{b)} 2.5 eq of allylsilane c)4 eq of allylsilane d)10% isomerized product (see text) c)1:1 mixture of allylsilanes c) Isolated yield. Tris(phenylchalcogeno)methanes were easily prepared on half-mole scale by the reaction of thiophenol or selenophenol with trialkylorthoformiate and BF₃OEt₂ as the catalyst. ¹⁰ The allylsilanes were prepared by reaction of the allylic Grignard reagents with ClSiMe₃¹¹ or by Pd-catalyzed coupling of vinyl iodides¹² with the Grignard reagent derived from ClCH₂SiMe₃. ¹³ In conclusion, the reaction 14,15 of allylsilanes with tris(phenylchalcogeno)methanes makes the synthesis of the very useful homoallyl chalcogenoacetals particularly easy. The compounds obtained in this paper could be used in several ways as interesting intermediates in organic synthesis. For example, oxidative elimination of one phenylchalcogeno group results in formation of chalcogeno-1,4-butadiene and hydrolysis of the same compounds could form the corresponding β - γ -unsaturated aldehydes since the chalcogenoacetal group is a masked aldehyde group. Acknowledgments: We thank CNPq/PADCT, FAPERGS (BR) and GTZ(Germany) for financial support. G.L.F. thanks Capes for a Master fellowship. Dr. M. J. Dabdoub is acknowledged for revision of the manuscript. ## References and Notes: - Paulmier, C. In The Selenium Reagents and Intermediates in Organic Synthesis; Baldwin, J. E., Ed.; Pergamon Books Ltd.: New York, 1986. - (a) Nsunda, K. M.; Hevesi, L. Tetrahedron Lett. 1984, 4441. (b) Silveira; C. C.; Comasseto, J. V.; Catani, V. Synth. Commun. 1985, 15, 931. (c) Comasseto, J. V.; Silveira, C. C. Synth. Commun. 1986, 16, 1167. (d) Hevesi, L.; Lavoix, A. Tetrahedron Lett. 1989, 30, 4433. e) Hevesi, L.; Nsunda, K. M. Tetrahedron Lett. 1985, 26, 6513. - 3) Yoshimatsu, M.; Shimizu, H.; Kataoka, T. J. Chem. Soc., Chem. Commun. 1995, 149. - 4) (a) Simpkins, N. S. Tetrahedron Lett. 1988, 29, 6787. (b) Simpkins, N. S. Tetrahedron 1991, 47, 323. - (a) Kataoka, T.; Yoshimatsu, M.; Shimizu, H.; Hori, M. Tetrahedron Lett. 1991, 32, 105. (b) Yoshimatsu, M.; Fujimoto, M.; Shimizu, H.; Hori, M.; Kataoka, T. Chem. Pharm. Bull. 1993, 41, 1160. (c) Yoshimatsu, M.; Sato, T.; Shimizu, H.; Hori, M.; Kataoka, T. J. Org. Chem. 1994, 59, 1011. (d) Silveira, C. C.; Araujo, M. A.; Lenardão, E. J.; Braga, A. L.; Dabdoub, M. J. Synthesis 1995, 1305. - 6) (a) Silveira, C. C.; Lenardão, E. J.; Comasseto, J. V.; Dabdoub, M. J. Tetrahedron Lett. 1991, 32, 5741. (b)Proess, G.; Pankert, D.; Hevesi, L. Tetrahedron Lett. 1992, 33, 269; - 7) (a) Hermans, B.; Hevesi, L. Bull. Soc. Chim. Belg. 1994, 103, 257. (b) Hermans, B.; Hevesi, L. Tetrahedron Lett. 1990, 31, 4363. - 8) Hermans, B.; Hevesi, L. J. Org. Chem. 1995, 60, 6141. - 9) (a) Nishiyama, H.; Itagaki, K.; Sakuta, K.; Itoh, K. Tetrahedron Lett. 1981, 22, 5285. (b) Nishiyama, H.; Narimatsu, S.; Itoh, K. Tetrahedron Lett. 1981, 22, 5289. - 10) Seebach, D.; Geiss, K.-H.; Beck, A. K.; Graf, B.; Daum, H. Chem Ber. 1972, 105, 3280. - 11) (a) Pillot, J. P.; Dunogues, J.; Calas, R. Tetrahedron Lett. 1976, 1871. (b) Slutsky, J.; Kwart, H. J. Am. Chem. Soc., 1973, 95, 8678. - 12) (a) Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett, 1990, 675. (b) Zweifel, G.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 2753. - 13) Negishi, E.; Luo, F. T.; Rand, C. L. Tetrahedron Lett. 1982, 23, 27. - Typical procedure: To a solution of HC(SePh)₃ (0.24g; 0.5 mmol) and allylsilane 3a (0.057g, 0.5 mmol) in CH₂Cl₂ (2 mL), cooled to -78°C under nitrogen, was added dropwise SnCl₄ (0.12 mL, 1 mmol). After 15, 30 and 45 min of reaction more allylsilane (0.25 mmol each time) was added. After 1 h of reaction at -78°C water (1 mL) and sat aq NaHCO₃ was added and extracted with ethyl acetate. The organic phase was dried (MgSO₄), filtered and the solvent removed under vacuo. The residual oil was purified by column chromatography of silicagel, eluting with hexanes. Yield: 0.265g (72%). 4a: ¹H NMR δ 2.71(t, J=6.4Hz, 2H), 4.49(t, J=6.4Hz, 1H), 4.9-5.08(m, 1H), 5.17 (br s, 1H), 5.7-6.2(m,1H), 7.14-7.64 (m, 10H); ¹³C NMR δ 40.9, 42.3, 117.6, 127.9, 128.9, 130.1, 134.6, 135.2; GC/MS, m/z: 368 (M⁺), 211(100%), 157, 131, 77; Anal. calcd. for C₁₆H₁₆Se₂: C, 52.48; H, 4.40; found C, 52.10; H, 4.31. - Selected spectral and analytical data (1 H NMR were taken at 80 MHz in CDCl₃). 4d: 1 H NMR δ 1.18-2.34(m, 8H), 2.40-2.68(m, 1H), 4.68(d, J=6Hz,1H),4.77 (s, 2H), 7.03-7.59(m, 10H), 13 C NMR (20 MHz) δ 23.3, 27.3, 31.0, 34.2, 48.6, 48.7, 107.9, 126.9, 127.0, 128.1, 129.2, 133.7, 133.8, 148.2; GC/MS m/z : 265 (M $^+$ SePh), 183, 157, 107, 79(100%), 77; *Anal.* calcd. for $C_{20}H_{22}Se_2$: C, 57.15; H, 5.28; found C, 56.77; H, 5.24. 5a: 1 H NMR δ 2.60 (t, J=6.8Hz, 2H), 4.43 (t, J=6.8Hz, 1H), 4.96-5.1 (m, 1H), 5.2 (d, J=1.0Hz, 1H), 5.73-6.24 (m, 1H), 7.19-7.56 (m, 10H); 13 C NMR (20 MHz) δ 39.8, 57.5, 117.9, 127.6, 128.8, 132.7, 134.0, 134.11; GC/MS m/z : 163 (100%, M $^+$ SPh), 135, 109; *Anal.* calcd. for $C_{16}H_{16}S_2$: C, 70.57; H, 5.93; found C, 69.93; H, 5.81. 5c: 0.68-2.0 (m, 11 H), 2.31-2.67 (m, 1H), 4.45 (d, J=3.5Hz,1H), 5.04 (dd, J=16.5, 2.1 Hz, 1H), 5.16 (dd, J=10.5, 2.1 Hz, 1H), 5.89 (ddd, J=16.5, 10.5, 8.4 Hz, 1H), 7.06-7.47 (m, 10H); 13 C NMR (20 MHz) δ 13.9, 22.4, 26.8, 30.9, 31.5, 48.6, 65.1, 117.3, 127.3, 127.4, 128.8, 132.3, 132.4, 135.1, 135.2, 138.4; GC/MS m/z : 233 (100%, M $^+$ SPh), 153, 135, 123, 109; *Anal.* calcd. for $C_{21}H_{26}S_2$: C, 73.65; H, 7.66; found C, 73.22; H, 7.66.